
64 The Delphi Magazine Issue 49

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Character Manipulation

QI need to get the ASCII num-
ber of a one character string.

Can you tell me which function I
use in Delphi?

AIf it is a string variable, and
you are sure the length is at

least 1 (having used Length to
check), use S[1] to get the first
character as a Char value. Then you
can pass that character to the Ord
function, or typecast it into a byte
value. For example:

var
S: String;
B: Byte;

...
if Length(S) > 0 then
B := Ord(S[1]);
//B := Byte(S[1]);

If you need to translate a byte value
to a character, either use a Char
typecast operation, or use the Chr
function. Incidentally, Windows
uses ANSI characters instead of
ASCII, which are used by DOS.

SQL Server Problem

QI’ve just upgraded my SQL
Server installation from ver-

sion 6.5 to 7.0 and I now have a
problem. I added a new row of data
in a table containing a date/time
field. When I tried to refresh the
view of the table in SQL Explorer I
got an error message Syntax error
converting date/time from character
string. I also get the error message
when I try to delete the row.

ASince your email address
seems to be Portuguese, I

will assume you are running this
setup in Portugal. This is not a BDE
problem. You have more than

likely forgotten to configure your
SQL Server login to Portuguese.
The SQL Server client passes a date
to the server as a string which is
configured according to the client
PC’s locale. The server expects to
receive dates according to the
login’s locale, which is not picked
up from anywhere. You must con-
figure this using the server tools
provided.

The reported error message will
appear when the three character
abbreviated month is not the same
in Portuguese as it is in English.

DCOM UI Problem

QI have a DCOM server run-
ning on an NT machine. Be-

cause it sometimes changes some
registry settings I want it to bring
up a Restart Windows dialog as de-
scribed in The Delphi Clinic in Issue
40. However, no matter what I try, I
cannot get the program to display
any kind of user interface, even my
own forms. What is going wrong?

AThis is nothing to do with
Delphi as such, more a

DCOM configuration question. On
the target server machine, you
should run the DCOM Configura-
tion application (DCOMCNFG.EXE)
and choose the following options:
Applications, Object Properties,
Identity, The interactive user. By
default, DCOM servers are
launched by The launching user,
rather than the interactive user. By
choosing the interactive user, any
user interface manufactured by the
application will be displayed on
the user’s desktop.

Daylight Savings Changeover

QI need to get the date of the
next clock adjustment for

Daylight Saving Changes. How can
I do it?

AThe Win32 API is GetTime-
ZoneInformation, which re-

turns a TTimeZoneInformation
record containing (potentially)
lots of timezone-related informa-
tion. This includes the descriptive
names of the standard time and
daylight saving time, along with
the difference in minutes between
these times and Co-ordinated
Universal Time (UTC).

It also gives information on
when the changes from daylight to
standard time and from standard
time to daylight time will occur.
These are both supplied as
TSystemTime record fields of the
TTimeZoneInformation record.
These TSystemTime records might
describe the transition date in
absolute format (where the wYear,
wMonth, wDay, wHour, wMinute,
wSecond and wMilliseconds fields
are valid), which means it will be
an exact date and time. However, if
the wYear field is zero, it is using
day-in-month format. This also
brings the wDayOfWeek field into use
and enables the routine to indi-
cate, for example, the second
Sunday in April, or the last Friday
in November, which would then
need to be interpreted individually
each year. If the wMonth field is zero,
no transition information is
available.

This makes the interpretation of
each year’s transition dates quite
tricky, but these alternate formats
are necessary if the user’s locale
dictates this approach. Listing 1
has some code from the OnCreate
event handler of the form in a
simple sample project called
TimeZone.Dpr. The code extracts
a whole bunch of timezone-related
details and shows them on a form.

66 The Delphi Magazine Issue 49

The program can be seen in Figure
1, giving timezone information
from my machine. Figure 2 shows
the form at design time: the labels’
captions have strings ready to be
passed to Format.

Terminating Programs

QHow do I terminate an exter-
nal application? From within

my application I have launched the
System WAV Player to play a wave
file. Using the ShellExecute com-
mand, I get the handle to the wave
player (or so I believe). I know the
following call, which should termi-
nate an application if one knows
the caption of its main window, but
since I do not know which applica-
tion is playing the file, I cannot be
sure of the caption:

PostMessage(FindWindow(
Nil, ‘window caption’),
wm_Quit, 0, 0);

AThe wm_Quit message nor-
mally arrives thanks to an

application calling PostQuitMessage
when the last window is destroyed.
You would not normally post it di-
rectly to another application.

TerminateProcess is an
unfriendly way to do the job, but

procedure TTimeZoneInfoForm.FormCreate(Sender: TObject);
var
RetVal: DWord;
TZI: TTimeZoneInformation;
StdBias, DayBias: Integer;
StdName, DayName: String;

const
OrdNums: array[1..5] of String =
('1st', '2nd', '3rd', '4th', 'last');

MinsPerDay = SecsPerDay / 60;
begin
RetVal := GetTimeZoneInformation(TZI);
if RetVal = $FFFFFFFF then //API call failed
RaiseLastWin32Error;

if TZI.StandardName[0] = #0 then //No name information
StdName := 'standard time'

else
StdName := TZI.StandardName;

if TZI.DaylightName[0] = #0 then //No name information
DayName := 'daylight time'

else
DayName := TZI.DaylightName;

case RetVal of
TIME_ZONE_ID_UNKNOWN:
lblCurrent.Caption := Format(lblCurrent.Caption,
['unknown time frame']);

TIME_ZONE_ID_STANDARD:
lblCurrent.Caption := Format(lblCurrent.Caption,
[StdName]);

TIME_ZONE_ID_DAYLIGHT:
lblCurrent.Caption := Format(lblCurrent.Caption,
[DayName]);

end;
lblBias.Caption := Format(lblBias.Caption, [TZI.Bias]);
StdBias := TZI.Bias + TZI.StandardBias;
lblStdBias.Caption :=
Format(lblStdBias.Caption, [StdBias, StdName]);

DayBias := TZI.Bias + TZI.DaylightBias;

lblDayBias.Caption :=
Format(lblDayBias.Caption, [DayBias, DayName]);

lblDayToStd.Caption :=
Format(lblDayToStd.Caption, [DayName, StdName]);

lblStdToDay.Caption :=
Format(lblStdToDay.Caption, [StdName, DayName]);

if TZI.StandardDate.wMonth = 0 then begin
lblDayToStd.Caption :=
lblDayToStd.Caption + 'an unspecified point';

lblStdToDay.Caption :=
lblStdToDay.Caption + 'an unspecified point';

Exit;
end;
if TZI.StandardDate.wYear = 0 then //"Day of month" date
with TZI.StandardDate do
lblDayToStd.Caption :=
Format('%s%s on the %s %s of %s',
[lblDayToStd.Caption, TimeToStr(EncodeTime(wHour,
wMinute, wSecond, wMilliseconds) +
DayBias/MinsPerDay), OrdNums[wDay], LongDayNames[
wDayOfWeek + 1], LongMonthNames[wMonth + 1]])

else //Absolute date
lblDayToStd.Caption := lblDayToStd.Caption +
DateTimeToStr(SystemTimeToDateTime(TZI.StandardDate) +
DayBias / MinsPerDay);

if TZI.DaylightDate.wYear = 0 then //"Day of month" date
with TZI.DaylightDate do
lblStdToDay.Caption :=
Format('%s%s on the %s %s of %s',
[lblStdToDay.Caption, TimeToStr(EncodeTime(wHour,
wMinute, wSecond, wMilliseconds) +
StdBias / MinsPerDay), OrdNums[wDay], LongDayNames[
wDayOfWeek + 1], LongMonthNames[wMonth + 1]])

else //Absolute date
lblStdToDay.Caption := lblStdToDay.Caption +
DateTimeToStr(SystemTimeToDateTime(TZI.DaylightDate) +
StdBias / MinsPerDay)

end;

➤ Figure 1: Extracting time zone information from Windows.

➤ Figure 2: The time zone form at design time.

➤ Listing 1
you need to have a process handle.
Not a problem if you launched the
application with the Win32 APIs
CreateProcess or ShellExecuteEx,
as they supply you with the infor-
mation (unlike the old 16-bit
WinExec and ShellExecute, which in
Win32 give you useless values).

Since you are launching the WAV
player indirectly, by running the
actual WAV file itself, you must use
ShellExecuteEx (because Create-
Process does not understand file

associations). This call will give a
process handle in the hProcess
field of its record parameter if you
specify see_Mask_NoCloseProcess in
the fMask field. This process
handle can be used to refer to the
launched application.

Having got the process handle,
you can pass it to a call to
TerminateProcess. This is a very
harsh way to close down an
arbitrary process as it gets no
opportunity to do any tidying up.

68 The Delphi Magazine Issue 49

Preferably, you should try and ter-
minate programs in a more
friendly, and ‘clean’ way.

More information on launching
applications, and waiting for them
to finish, can be found in The
Delphi Clinic in Issue 16, p52 and
Issue 20, p55. Page 54 of Issue 32
discusses the difference between
an instance handle, as returned by
ShellExecute, and a window
handle. It also describes how to get
the window handle of a launched
application’s main window, by
using EnumThreadWindows to enu-
merate through all the windows
owned by the main thread of the
application just launched. Alterna-
tively, EnumWindows can be used to
iterate over all windows in all
threads in the system, and
GetWindowThreadProcessID can be
used to verify if it belongs to the
process in question.

Unfortunately, whilst Create-
Process returns a thread handle,
thread ID, process handle and pro-
cess ID, ShellExecuteEx only
returns a process handle. The rele-
vant API calls (EnumThreadWindows
and GetWindowThreadProcessID)
take IDs, not handles. So
ShellExecuteEx gives you one
advantage (working with file asso-
ciations) but leaves you with a
problem (not being able to identify

the launched application’s win-
dows).

So, at this point, if you launch the
viewer with ShellExecuteEx, the
best I can come up with is the
unfriendly call to TerminateProcess.
This will require the process
handle in question to have PRO-
CESS_TERMINATE access under Win-
dows NT, which might mean you
will need to call DuplicateHandle to
get a new version of the process
handle with relevant access rights.

But now, let’s say that you work
out an appropriate command-line
that launches the program with
CreateProcess, giving you all the
handles and IDs available. How do
we do a so-called clean process ter-
mination? According to
Microsoft’s MSDN article Q178893,
we should iterate through all the
top-level windows of the applica-
tion and use PostMessage to post a
wm_Close message to each one (not
wm_Quit). This allows the applica-
tion to close as if the user closed all
the windows. You should then wait
for a certain interval, sufficient for
the user to deal with any confirma-
tion dialogs that come up. If the
process is still around, you can
then legitimately use Terminate-
Process.

To wait for the a given timeout,
you can either call WaitFor-
SingleObject, passing in the pro-
cess handle and a timeout value, or

you could send the messages to
the target windows with
SendMessageTimeout instead of
PostMessage. The Windows Task
Manager seems to wait about 10
seconds before offering the
chance to brashly terminate the
process (or wait yet another 10
seconds).

The sample project on the disk,
TermApp.Dpr, shows both scenar-
ios. A button on the form will allow
you to launch a program with
ShellExecuteEx, and another
button will terminate it with
TerminateProcess.

Alternatively, some other but-
tons will use CreateProcess to
launch the program and a combi-
nation of APIs to terminate it. The
first pair of buttons are quite
straightforward, but the second
pair warrant some looking at. List-
ing 2 shows the event handlers and
Figure 3 gives you an idea of what
happens if the application does
not terminate within ten seconds.
Does this look familiar at all?

Computer Name In Registry

QDo you know how to read
from

HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Control\
ComputerName\ComputerName\
ComputerName

procedure TMainForm.btnLaunch2Click(Sender: TObject);
var
SI: TStartupInfo;
PI: TProcessInformation;

begin
if dlgOpen.Execute then begin
GetStartupInfo(SI);
Win32Check(CreateProcess(nil, PChar(dlgOpen.FileName),
nil, nil, False, 0, nil, nil, SI, PI));

//Save process information
HProcess := PI.hProcess;
ProcessID := PI.dwProcessId;
ThreadID := PI.dwThreadId;
btnLaunch1.Enabled := False;
btnLaunch2.Enabled := False;
btnTerminate1.Enabled := False;
btnTerminate2.Enabled := True;
WaitForInputIdle(HProcess, Infinite);

end
end;
function EnumFunc(Wnd: HWnd; TargetPID: DWord): Bool;
stdcall;

var PID: DWord;
begin
GetWindowThreadProcessID(Wnd, @PID);
if PID = TargetPID then
PostMessage(Wnd, wm_Close, 0, 0);

Result := True;
end;
function CheckAppClosed(Process: THandle): Boolean;
var OldTime: TDateTime;
const
mrEndTask = 100;
mrWait = 101;

begin
Result := False;

OldTime := Now;
//Loop till either 10 sec is up, or program has terminated
repeat
//Do quick check on the app, but not long
//enough to block (hang) this UI thread
case WaitForSingleObject(Process, 100) of
Wait_Object_0: Result := True;
Wait_Failed: RaiseLastWin32Error;

end;
//Stop UI from hanging
Application.ProcessMessages;
//If user wants to shut, then fine
if Application.Terminated then
Break;

until Result or (Now > OldTime + 10 / SecsPerDay);
if not Result then //timeout has passed
case ShutAppForm.ShowModal of
mrEndTask :
begin
TerminateProcess(Process, 1);
Result := True

end;
mrWait : {do nothing - we will loop again} ;
mrCancel : Result := True;

end
end;
procedure TMainForm.btnTerminate2Click(Sender: TObject);
begin
EnumWindows(@EnumFunc, LPARAM(ProcessID));
//May need to do this whole 10 sec wait repeatedly
repeat until CheckAppClosed(HProcess);
btnLaunch1.Enabled := True;
btnLaunch2.Enabled := True;
btnTerminate1.Enabled := False;
btnTerminate2.Enabled := False;

end;

➤ Listing 2

September 1999 The Delphi Magazine 69

in the registry? I’ve tried, but
because the TRegistry object uses
HKEY_CURRENT_USER as its root, the
code I have used in the past does
not work. My applications need to
know what machine they are
running on.

AIn order to access a key un-
der a root other than

HKEY_CURRENT_USER, you need to use
the RootKey property of the
TRegistry (or TRegIniFile) object.
So Listing 3 would do it.

On Windows NT, you must have
appropriate access in your pro-
gram to access the registry.

But after sorting out how to
access that key in the registry, I
should point out that the approved
way of identifying the current com-
puter name is to not use the
registry at all. Instead, you should
use the relevant Win32 API, Get-
ComputerName. Listing 3’s Computer-
Name function can now be rewritten
as shown in Listing 4.

New Delphi 5 Features

QI read your review of Delphi 5
on last month’s disk and saw

coverage of a number of mostly
high-level features. Can you give
any details of some of the more
low-level changes that you know
of?

AHaving seen a
pre-release ver-

sion of Delphi 5 being
demonstrated a few
times at the Inprise
Conference recently, I
did learn a few more
things that I can share
with you. In no partic-
ular order, here is a
list of those that I can
think of at the moment
that I saw or heard
during talks by R&D
members Chuck
Jazdzewski and Eddie

Churchill.
First of all, the Delphi 5 icon has

changed, as has the default icon
used for your applications. Figure 4
shows the pair of them, with the
Delphi IDE icon to the left.

The Object Inspector has been
trained to remember much better
which properties were selected,
and which properties were
expanded, as you switch between
components. For example, let’s say
you are looking at a TMemo compo-
nent. You can expand the Anchors
property, and the Font property,
and also the Style sub-property of
the font. You can select the Size
sub-property of the font, then
select a TColorDialog component
which has none of these proper-
ties. If you then re-select the TMemo,
the Anchors, Font and Style proper-
ties will still be expanded, and Size
will still be selected.

Whilst mentioning fonts in the
context of the Object Inspector,
something else springs back to
mind. The Object Inspector now
allows custom drawn lists of prop-
erty values (as was discussed in
the review), and Delphi will do a
reasonable job for cursor, colour,
brush style and pen style proper-
ties, it does not (by default) give
you a WYSIWYG display of font
names to choose from. The font
name property list looks just the
same as it always has done.

The bracketed ‘by default’
phrase was used because there is
built-in support for this, but it is
disabled by default. When
enabled, all fonts on the system get
enumerated, loaded and drawn
when the property value list is
dropped down. On slower
machines, or machines with vast
quantities of fonts, this will take
some time to do. But if you want to
test it out, the job is simple.

The DsgnIntf unit now defines a
global variable called FontName-
PropertyDisplayFontNames, which
is set to False. If you make a small
unit that sets this to True, either in
its initialisation section, or in a
parameter-less Register proce-
dure (which is declared in the
interface section), then you can
install it into the IDE in a package.

The easiest way is to save the
unit, choose File | Open... and
locate the Delphi User Package
DCLUSR50.DPK in Delphi’s Lib

function ComputerName: String;
begin
Result := 'Unknown';
with TRegistry.Create do
try
RootKey := HKEY_LOCAL_MACHINE;
if OpenKey('System\CurrentControlSet\Control\ComputerName\ComputerName',
False) then
Result := ReadString('ComputerName')

finally
Free

end;
end;
...
ShowMessage(GetComputerName)
...

function ComputerName: String;
var
Buf: array[0..MAX_COMPUTERNAME_LENGTH] of Char;
Len: DWord;

begin
Len := SizeOf(Buf);
if GetComputerName(Buf, Len) then
Result := Buf

else
Result := 'Unknown';

end;

➤ Above: Listing 3 ➤ Below: Listing 4

➤ Figure 4: Delphi 5’s new icons.

➤ Figure 3: Programmatic process termination.

70 The Delphi Magazine Issue 49

directory. When the package
opens up, click on the contains
node in the tree view, press the Add
button, locate the unit with the
Browse... button and press OK. If
the Install button is enabled on
the package editor then press it,
otherwise press the Compile
button. Now find a component with
a Fontproperty, expand it and drop
down the list of values for the Name
sub-property. Figure 5 shows the
result.

Where appropriate, compo-
nents that have an ImageIndex
property to pick an image from an
image list component, also give
visual feedback in the property
editor. Figure 6 shows the
ImageIndex property of a
TToolButton in a TToolBar whose
Images property has been con-
nected to a TImageList component
populated with bitmaps.

Yet another new feature of the
Object Inspector appears to be
undocumented. Now that proper-
ties are categorised, you can
right-click the Object Inspector,
choose View and then do one of
several things. The popup menu
allows you to enable or disable

➤ Figure 5: The font name
property with visual feedback.

categories individually, enable all
categories, no categories, or to
toggle the categories. This last
option means disabling the display
of all categories currently being
displayed and then enabling all
those that were hidden.

The undocumented facility is
holding down the Ctrl key when
choosing a category. This causes
all categories to be hidden except
the one you clicked. This saves you
going through the menu to disable
all categories, and then going
through the menu again to enable
the one you want to see.

Incidentally, in Dave Jewell’s
Second Opinion section of the
Delphi 5 review, he was unhappy
about properties being able to be
displayed in several categories.
Inprise are actually making a plus
point out of this. Delphi 5 is the
only tool that will do this, and it
should ultimately prove handy.
Take the Caption property for
example. It is textual and so
localisable, and it appears in the
Locale category. However it is also
visual and so appears in the Visual
category. Depending upon what
you are working on, you might
immediately think of either of
these categories to check for Cap-
tion. Delphi 5 makes things easy
because the property lives in both
categories.

Finally on the subject of the
Object Inspector, it now handles
published Int64 properties.

A new item in the File | New...
dialog is a Console App Wizard.
This is not an interactive wizard,
but it makes light work of setting
up a GUI-less application. When
you invoke it, you get what is
shown in Listing 5.

When working with OnKeyDown
and OnKeyUp handlers, the Key
parameter is a Windows virtual key
code. Those in the know are aware
that constants for these are
defined in the Windows import
unit. They may also know how to
coax information out of the Win32
API reference help file to describe
and name these constants. Cer-
tainly, in Delphi 2, 3 and 4, the sug-
gestion topics to look at in the
OnKeyDown/OnKeyUp help page have
been completely unhelpful in this

regard. Pleasantly, the Delphi help
file now has a page discussing and
listing these codes, and the help
for the aforementioned events
links to it.

The TSplitter component has
AutoSnap and MinSize properties.
MinSize dictates the smallest size
that panes either side of the split-
ter can be shrunk to. AutoSnap
dictates whether the size of a
neighbouring pane will be set to 0 if
the user tries to make it smaller
than MinSize.

Menu components have had
some nice enhancements made to
them. They can now use separate
image list components for any
submenus you choose.

They can also now work out
their own hotkeys (the under-
scored letters, normally set up
with an & character). This can be
done throughout an entire menu

➤ Figure 6: A meaningful
ImageIndex property... at last!

program Project2;
{$APPTYPE CONSOLE}
uses
SysUtils;

begin
// Insert user code here

end.

➤ Listing 5

72 The Delphi Magazine Issue 49

structure automatically (before a
menu is displayed), or selectively
done on individual menus and
submenus, using the AutoHotkeys
property. Additionally, if you are
dynamically building a menu, you
can manually kick-start this pro-
cess with the RethinkHotkeys
method. This means that you can
design a menu as shown in the
menu designer in Figure 7, and at
runtime it will look like Figure 8.

Additionally, menus have
another property, AutoLine-
Reduction, that works in a similar
way (and has a related routine
RethinkLines) and ensures that a
menu does not start or end with a
separator line, or have two of them
next to each other. To make
dynamic menu creation easier,
menu items have methods for
adding new separator lines in vari-
ous places, and some other useful
routines you can look for.

Popup menus can now control
the popup animation as supported
by Windows 98 and Windows 2000
with their MenuAnimation property.

RTTI support has been up-rated
by a number of new things in the
TypInfo unit. Firstly, there is a new
TTypeKind value for unsigned long
types, something which should
have appeared in Delphi 4, what
with Cardinal being defined cor-
rectly there, and also the addition
of LongWord.

More importantly, however, is
the addition of a number of new
property reader and writer rou-
tines. Some of these are brand new,
to cater for reading and writing
enum, set and object properties,
without having to use GetOrdProp
and SetOrdProp in conjunction with

a typecast. GetEnumProp, for exam-
ple, returns a string, which is the
textual representation of the enum
value. Previously, to get an enu-
merated property value would
require a call to GetOrdProp and
then a call to GetEnumName.

Most of the new routines are
overloaded versions of the existing
routines, to provide easier access
to the property values. These easy
access routines are designed to
take a property name as a string,
rather than require you to get a
pointer to the TPropInfo property
information record. But be warned!
None of these easy access routines
do error checking. They expect the
named property to exist, and will
likely cause an Access Violation if
this is not so. If you are unsure, or
are writing generic code, be sure to
call the new IsPublishedProp first.

To help generic property read-
ing and writing, GetPropValue and
SetPropValue do the job of most of
the other routines, but take or
return the property value as a
Variant.

The Dialogsunit has a new global
variable called ForceCurrent-
Directory, which can be set to True
to avoid Windows 98 and Windows
2000 defaulting open and save
dialogs to the My Documents
folder when the initial directory is
blank. Instead, this causes them to
stick to the current directory.
Because this variable did not exist
in Delphi 4’s VCL, the Delphi 4 IDE
fell foul of this irritation, often
prompting you for projects to open
from My Documents.

Finally in this list (but certainly
not finally in what is new in the
product), a word or two about

frames. Frames
were introduced
to improve on the
idea of component
templates. Com-
ponent templates

are a good convenience measure
for reproducing a bunch of compo-
nents with set properties and
event handlers. However, if you
want to change the original
template, it will have no effect on
any copies of the original template
which you have made. Frames use
a modified version of form inheri-
tance technology to ensure that
any change which is made to the
original frame is replicated
throughout all places where the
frame was used.

If you are planning on making
several uses of some component
that has a heavy impact on the
DFM file (for example an image
component with a bitmap installed
in it), a frame is a good way of
easing the byte burden on your
EXE. If you put the image in a
frame, and use the frame multiple
times, the image data will only be
stored once in the frame’s DFM.

Component writers must follow
certain rules to ensure your com-
ponents will work correctly with
frames. Firstly, you must ensure
your component supports form
inheritance. By default, a compo-
nent’s ComponentStyle has the
csInheritable flag in it. TNotebook
and TTabbedNotebook remove this
flag from the set and so do not sup-
port form inheritance, and by
implication will not work with
frames. If you remove this flag,
your component will not work with
frames. When a component with-
out the csInheritable flag (such as
TNotebook) is dropped on a frame,
you are presented with the mes-
sage: TNotebook is marked as not
supporting form inheritance and
frames, and cannot be used in a
frame.

The second point is that when a
frame instance has been dropped
onto a form designer, no new child
controls can be given to the frame
by the user (anything dropped on
the frame instance will be a child of
the underlying form). Any
property or component editors
must uphold this rule. If you write
property or component editors
that manufacture new child
controls then you are obliged to
make a few checks before going
ahead.

➤ Left, Figure 7:
No hotkeys in
sight.

➤ Right, Figure 8:
Hotkeys
automatically
assigned.

September 1999 The Delphi Magazine 73

Best of all is to only allow access
to the property/component editor
if the component is not in a frame
instance sitting on a form. To
check this, you need to ensure that
both the component itself, and also
underlying root object (the form, if
looking at a form designer, or the
frame when looking at a frame
designer) can accept child con-
trols. A TPageControl does this, and
so the New Page item from its popup
menu is not displayed if the com-
ponent is in a frame on a form.

So, let’s say we are writing a
hypothetical component called a
TNewPanel, which has one compo-
nent editor menu item whose job is
to create a child button in the
panel. This component editor item
must be disabled if the TNewPanel
instance is in a frame on a form (a
so-called inlined frame). The
component editor could look like
Listing 6.

Incidentally, some component
developers will often refer to
Designer.Form in their property or
component editors when they
should in fact be referring to
Designer.GetRoot. GetRoot returns

the underlying form when the com-
ponent is in a form designer. Simi-
larly, it returns the frame on a
frame designer and the data
module for a data module designer.

Many developers assume
(wrongly) that Designer.Form
returns the same thing as
Designer.GetRoot, but this is only
true when editing forms in a form
designer. For data modules, web
modules and frames, Designer.
Form returns a reference to the
placeholder form that the IDE

manufactures in order to show you
what components are on the data
module etc. In the case of a frame,
it is an instance of a TWin-
ControlForm, and for a data module,
service, or web module it is a
TDataModuleDesigner.

Acknowledgements
Thanks go to Inprise’s very own
Steve Axtell for help with this
month’s database problem.

procedure TNewPanelEditor.ExecuteVerb(Index: Integer);
var Btn: TButton;
begin
if Index = 0 then begin
Btn := TButton.Create(Designer.GetRoot);
Btn.Name := Designer.UniqueName('Button');
Btn.Caption := TimeToStr(Time);
Btn.Left := Random(TControl(Component).Width - Btn.Width);
Btn.Top := Random(TControl(Component).Height - Btn.Height);
Btn.Parent := TWinControl(Component);
Designer.Modified

end
end;
function TNewPanelEditor.GetVerb(Index: Integer): string;
begin
Result := 'Do it'

end;
function TNewPanelEditor.GetVerbCount: Integer;
begin
Result := 0;
//The one component editor verb implemented here depends
//upon the component not being in an inlined frame instance
if not IsInInlined then
Result := 1

end;

➤ Listing 6

	Character Manipulation
	SQL Server Problem
	DCOM UI Problem
	Daylight Savings Changeover
	Terminating Programs
	Computer Name In Registry
	New Delphi 5 Features
	Acknowledgements

